Skip to main content

Création d'un projet type : Segmentation

Depuis le header, je clique sur Create new project.

Screenshot 1-1

1/ Étape Project

On renseigne les champs obligatoires :

  • Client
  • Project type
  • Project name
  • Project deadline
  • Project description

Les champs non obligatoires :

  • Default markers : apparaît sur l’item plus tard
  • to delete : indique un item à supprimer
  • to check : indique un item à vérifier
  • to discuss: indique un item à discuter

On peut définir des niveaux d’accès à l’item importé à :

  • l’admin
  • le data scientist
  • l’utilisateur

Screenshot 1-2

2/ Étape Files

Screenshot 1-3

les champs :

  • Config file: fichier de config
  • Annotations file: fichier contenant les annotations liées à l’item
  • Predictions file: fichier contenant les predictions liées à l’item

Contrairement aux annotations, les prédictions viennent d’un modèle pré-entraîné. Après l’import, on pourra choisir de les garder ou non.

Quant au champ obligatoire :

  • item file : c’est une liste qu’il faut préparer à l’avance comprenant le type de l’item et une id unique

3/ Étape Labeling

On va définir ce qu’on veut faire avec notre projet.

  • Task Title : définit le nom
  • Task Type : définit le type

Screenshot 1-4

On peut ajouter un nouveau label en cliquant sur Add a new label.

Les champs :

  • Label Code : doit être unique
  • Label Name : ne doit pas forcement porter le même nom que Label Code
  • Color : définit la couleur du label
  • Hotkey : permet de créer un raccourci clavier
  • Label Description : une description du label

Screenshot 1-5

caution

Une fois ces labels définis, il n’est plus possible de les modifiers par la suite.

4/ Étape Annotation Guide

On peut ici définir des règles d’annotations.

Une fois les spécifications d’un projet renseignées, on peut cliquer sur Add a new task pour commencer à renseigner les détails d'un autre projet.

Screenshot 1-6

exemple d'un fichier de config

{
"text": [
{
"name": "Text Recognition task",
"min": null,
"max": null,
"values": [
{
"parents": [],
"exposed": true,
"type": "text",
"annotationPourcent": 50,
"annotationCount": 1,
"_id": "6151f60ce23ddf001d69eec0",
"project": "6151f60ce23ddf001d69eebf",
"value": "textInput1",
"label": "textInput1",
"category": "Text Recognition task",
"updatedAt": "2021-09-27T16:49:16.818Z",
"createdAt": "2021-09-27T16:49:16.818Z",
"__v": 0,
"color": null,
"description": null,
"hotkey": null,
"max": null,
"min": null
},
{
"parents": [],
"exposed": true,
"type": "text",
"annotationPourcent": 50,
"annotationCount": 1,
"_id": "6151f60ce23ddf001d69eec1",
"project": "6151f60ce23ddf001d69eebf",
"value": "textInput2",
"label": "textInput2",
"category": "Text Recognition task",
"updatedAt": "2021-09-27T16:49:16.819Z",
"createdAt": "2021-09-27T16:49:16.819Z",
"__v": 0,
"color": null,
"description": null,
"hotkey": null,
"max": null,
"min": null
}
]
}
],
"zone": [
{
"name": "bboxes",
"min": null,
"max": null,
"values": [
{
"parents": [],
"exposed": true,
"type": "zone",
"annotationPourcent": 50,
"annotationCount": 1,
"_id": "6151f60ce23ddf001d69eec2",
"project": "6151f60ce23ddf001d69eebf",
"color": "123",
"value": "bbox_name",
"hotkey": "n",
"label": "Name",
"category": "bboxes",
"updatedAt": "2021-09-27T16:49:16.819Z",
"createdAt": "2021-09-27T16:49:16.819Z",
"__v": 0,
"description": null,
"max": null,
"min": null
},
{
"parents": [],
"exposed": true,
"type": "zone",
"annotationPourcent": 50,
"annotationCount": 1,
"_id": "6151f60ce23ddf001d69eec3",
"project": "6151f60ce23ddf001d69eebf",
"value": "bbox_skill",
"hotkey": "c",
"label": "Skill",
"category": "bboxes",
"updatedAt": "2021-09-27T16:49:16.819Z",
"createdAt": "2021-09-27T16:49:16.819Z",
"__v": 0,
"color": null,
"description": null,
"max": null,
"min": null
},
{
"parents": [],
"exposed": true,
"type": "zone",
"annotationPourcent": 50,
"annotationCount": 1,
"_id": "6151f60ce23ddf001d69eec4",
"project": "6151f60ce23ddf001d69eebf",
"value": "bbox_formation",
"hotkey": "f",
"label": "Formation",
"category": "bboxes",
"updatedAt": "2021-09-27T16:49:16.820Z",
"createdAt": "2021-09-27T16:49:16.820Z",
"__v": 0,
"color": null,
"description": null,
"max": null,
"min": null
},
{
"parents": [],
"exposed": true,
"type": "zone",
"annotationPourcent": 150,
"annotationCount": 3,
"_id": "6151f60ce23ddf001d69eec5",
"project": "6151f60ce23ddf001d69eebf",
"value": "bbox_Exp",
"hotkey": "e",
"label": "Experience",
"category": "bboxes",
"updatedAt": "2021-09-27T16:49:16.820Z",
"createdAt": "2021-09-27T16:49:16.820Z",
"__v": 0,
"color": null,
"description": null,
"max": null,
"min": null
}
]
}
],
"name": "DEMO Zone and Text : CV - Extraction",
"client": "LJN",
"type": "image",
"guidelines": "The Guidelines",
"highlights": [],
"description": "Demo de projet",
"admins": ["admin@test.com"],
"users": ["user@test.com"],
"dataScientists": ["datascientis@test.com"],
"defaultTags": ["pose question", "etrange", "rigolo"],
"showPredictions": false,
"prefillPredictions": false,
"filterPredictionsMinimum": 0.4,
"deadline": "2025-11-30T13:57:20.355Z",
"entitiesRelationsGroup": []
}

exemple d'un fichier d'items

{
"predictions": {
"raw": {
"Text Recognition task": {
"entities": [
{ "value": "textInput1", "text": "This is a prediction" },
{ "value": "textInput2", "text": "This is second prediction" }
]
},
"bboxes": {
"entities": [
{
"value": "bbox_Exp",
"coords": [
{ "x": 0.4845528455284553, "y": 0.01264367816091954 },
{ "x": 0.9707317073170731, "y": 0.016091954022988506 },
{ "x": 0.9739837398373984, "y": 0.11609195402298851 },
{ "x": 0.4878048780487805, "y": 0.1103448275862069 }
]
}
]
}
},
"keys": [
{ "value": "textInput1", "text": "This is a prediction" },
{ "value": "textInput2", "text": "This is second prediction" },
{
"value": "bbox_Exp",
"zone": [
{ "x": 0.4845528455284553, "y": 0.01264367816091954 },
{ "x": 0.9707317073170731, "y": 0.016091954022988506 },
{ "x": 0.9739837398373984, "y": 0.11609195402298851 },
{ "x": 0.4878048780487805, "y": 0.1103448275862069 }
]
}
]
},
"uuid": "d7bb0128-c478-4f56-a00a-601ee6bd0849",
"data": { "url": "https://online.dts.edu/eportfolios/34/entries/51/files/R0JCkx5SXaFzWnEIYhPd5yrDNVGSOqoMVZf4rbSf" },
"type": "image",
"metadata": { "_id": 123 },
"description": "",
"annotated": true,
"annotatedBy": ["admin@test.com"],
"createdAt": 1632761356851,
"velocity": 64,
"lastAnnotator": { "email": "admin@test.com" },
"seenAt": "2022-11-02T12:21:20.358Z",
"annotatedAt": "2022-10-12T15:53:35.764Z"
}

exemple d'un fichier d'annotation

{
"item": {
"uuid": "d7bb0128-c478-4f56-a00a-601ee6bd0849",
"datatype": "image",
"data": {
"url": "https://online.dts.edu/eportfolios/34/entries/51/files/R0JCkx5SXaFzWnEIYhPd5yrDNVGSOqoMVZf4rbSf"
},
"metadata": { "_id": 123 }
},
"itemMetadata": {
"createdAt": 1632761356851,
"updated": "2022-11-02T12:21:20.359Z",
"seenAt": "2022-11-02T12:21:20.358Z"
},
"tags": [],
"comments": [],
"metadata": { "_id": 123 },
"annotationMetadata": {
"annotatedBy": "admin@test.com",
"annotatedAt": "2022-02-23T09:16:53.062Z",
"createdAt": "2022-02-23T09:16:53.051Z"
},
"annotation": {
"text": {
"Text Recognition task": {
"entities": [
{ "value": "textInput1", "text": "This is a prediction" },
{ "value": "textInput2", "text": "This is second prediction" }
]
}
},
"zone": {
"bboxes": {
"entities": [
{
"value": "bbox_Exp",
"coords": [
{ "x": 0.4845528455284553, "y": 0.01264367816091954 },
{ "x": 0.9707317073170731, "y": 0.016091954022988506 },
{ "x": 0.9739837398373984, "y": 0.11609195402298851 },
{ "x": 0.4878048780487805, "y": 0.1103448275862069 }
]
},
{
"value": "bbox_formation",
"coords": [
{ "x": 0.07586206896551724, "y": 0.776255707762557 },
{ "x": 0.9280788177339901, "y": 0.7800608828006088 },
{ "x": 0.9172413793103448, "y": 0.8774733637747336 },
{ "x": 0.07980295566502463, "y": 0.8706240487062404 }
]
},
{
"value": "bbox_Exp",
"coords": [
{ "x": 0.8088669950738916, "y": 0.6050228310502284 },
{ "x": 0.08374384236453201, "y": 0.6050228310502284 },
{ "x": 0.08374384236453201, "y": 0.4916286149162861 },
{ "x": 0.8088669950738916, "y": 0.4916286149162861 }
]
}
]
}
}
},
"historicAnnotations": []
}